Table of Contents

Volume 1

| Preface | .. | iii |
| Co-organising and Programme Committee | .. | iv |

KEYNOTE PAPER

Fire research – Quo Vadamus?
Dougal Drysdale, University of Edinburgh, UK
Page 1

HARMONISATION

A new European system for fire testing and classification of cables
Björn Sundström, J Axelsson, P Van Hees, SP Fire Technology, Sweden
Page 5

Variation of testing conditions in single burning item tests
Anja Hofmann, Federal Institute for Materials Research and Testing (BAM), E Cziesielski, Technical University Berlin, Germany, U Schneider, Technical University Vienna, Austria
Page 17

Plan and initial results of the second SBI round robin test programme
Bart Sette, Ghent University, Belgium, R van Mierlo, TNO, The Netherlands, E Mikkola, VTT, Finland, C Lukas, Dow Chemical Co Ltd., UK, B Messerschmidt, Rockwool International, Denmark
Page 25

European reaction to fire performance of wood and timber products
Birgit Östman, Trätek, Swedish Institute for Wood Technology Research, Sweden, E Mikkola, VTT Building and Transport, Finland
Page 35

DYNAMICS

Relationship between heat and smoke release for the well-ventilated combustion of fuels
Archibald Tewarson, FM Global, USA
Page 49

Thermal spill plume studies for the design of smoke control systems
Roger Harrison, FRS, BRE, UK, M Spearpoint, University of Canterbury, New Zealand
Page 61

Interpretation of small and medium scale experiments with an enclosed burner fire
Andrei Chamchine, G Makhviladze, A Snegirev, T Graham, University of Central Lancashire, UK
Page 73

Over-pressure peaks and low-pressure peaks during compartment fire tests in forced ventilated configuration
Hugues Prétrel, W Le Saux, Y Pizzo, J Such, IRSN, France
Page 83

Study on effect of opening location on the occurrence of backdraft
Wengu Weng, W Fan, University of Science and Technology of China, PR China, Y Hasemi, Waseda University, Japan
Page 95
Wall-vent compartment fire behavior under limited ventilation
Yunyong Utiskul, J Quintiere, University of Maryland, USA, T Naruse, Building Research Institute, Japan ... 105

Fuel regression rates of hydrocarbon pool fires in crosswinds
Cecilia Lam, E Randsalu, E Weckman, University of Waterloo, Canada, A Brown, W Gill, L Gritzo, Sandia National Laboratories, USA ... 117

Fires in reduced oxygen conditions
Peter Fardell, D Purser, J Purser, N Marshall, P Clark, FRS, BRE, UK ... 129

The prediction of water coverage on LPG storage tanks protected by a water deluge
Gareth Davies, P Nolan, London South Bank University, UK .. 143

STRUCTURES... 155

Behaviour of cellular steel beams in fire
Timothy Liu, Tenos Ltd, UK, K H Liew, Malaysia ... 157

Experimental characterization of the effect of charring on the residual load carrying capacity of a structural fibre reinforced composite
José Torero, The University of Edinburgh, UK, D Hill, Rimkus Consulting Group Inc, USA ... 169

Measurement of the thermal properties at high temperature
Robert Jansson, SP Fire Technology, Sweden .. 181

Spalling of concrete for tunnels
Robert Jansson, L Boström, SP Fire Technology, Sweden ... 189

Computer modeling and fire tests used to verify fire resistance of various wall assemblies
Jeffrey Maddox, D Gemeny, Rolf Jensen & Associates, USA .. 199

Fire performance of columns in fire conditions
Neal Butterworth, Buro Happold, F Block, University of Sheffield, UK .. 207

A comparison of heat exposure in fire resistance test furnaces controlled by plate thermometers and by shielded thermocouples
Mohamed Sultan, National Research Council of Canada, Canada .. 219

HEAT TRANSFER .. 231

Structural response modelling of wood-joist floor assemblies exposed to fires
Noureddine Benichou, National Research Council of Canada, Canada .. 233

Fire performance of partition assemblies
Samuel Manzello, R Gann, S Kukuck, K Prasad, W Jones, National Institute of Standards and Technology, USA ... 245

Predicting the performance of drywall construction exposed to design fires

Total heat flux cannot be measured
Ulf Wickström, I Wetterlund, SP Swedish National Testing and Research Institute, Sweden ... 269
Flame heat transfer in commodity classification fire tests
Peter Wu, J Chaffee, John deRis, FM Global, USA ... 277

Radiative impact of wind-blown fires
Alexander Snegirev, G Makhviladze, University of Central Lancashire, J Marsden, Greater Manchester County Fire Service, UK ... 289

RISK ... 301

A review of fire risk assessment methods
David Charters, Arup Fire, UK .. 303

Property loss in structural fires in Finland
Olavi Keski-Rahkonen, K Tillander, VTT Building and Transport, Finland 313

Environmental concerns of fires: Facts, figures, questions and new challenges for the future
Guy Marlair, INERIS, France, M Simonson, SP Swedish National Testing and Research Institute, Sweden, R Gann, National Institute of Standards and Technology, USA .. 325

The costs and benefits of residential sprinkler systems
Jeremy Fraser-Mitchell, FRS, BRE, UK ... 339

EVACUATION... 351

The representation of occupant sensitivity to irritant fire gases within evacuation analysis
Ed Galea, S Gwynne, P Lawrence, Z Wang, University of Greenwich, UK 353

Fire and evacuation risk assessment for passenger ships
Erik Vanem, R Skjong, DNV Research, Norway .. 365

The basis for egress provisions in US building codes
Richard Bukowski, E Kuligowski, NIST, USA .. 375

A general, computationally intelligent model for egress simulation
Richard Holden, A Cangelosi, University of Plymouth, UK .. 387

PERFORMANCE BASED CODES .. 399

A process validation methodology for the use of fire safety engineering
Martin Shipp, FRS, BRE, UK .. 401

The role of “redundancy” in performance-based fire safety regulation
Vincent Brannigan, University of Maryland, USA, A Kilpatrick, Glasgow Caledonian University, UK .. 413

Egress provisions and the Dutch Buildings Decree
Peter van de Leur, DGMR Consulting Engineers, E Janse, Lichtveld Buis & Partners Consulting Engineers, The Netherlands ... 425

Fire loads and design fires for commercial buildings
George Hadjisophocleous, E Zalok, Carleton University, Canada ... 435

Building separation calculations revisited using advanced fire models
Richard Chitty, S Kumar, FRS, BRE, UK .. 447

Fire engineering, setting the baseline
Alan Tyldesley, Health and Safety Executive, UK .. 459
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSTERS</td>
<td></td>
<td>465</td>
</tr>
<tr>
<td>DYNAMICS</td>
<td></td>
<td>467</td>
</tr>
<tr>
<td>Experimental analysis of storage fires for a better understanding of warehouse fires</td>
<td>Stéphanie Patej, L Fournier, A Carrau, INERIS, France</td>
<td>469</td>
</tr>
<tr>
<td>Characterisation of creeping flame over PMMA in narrow channel</td>
<td>Bogdan Dlugogorski, H Wang, J Hicks, B Moghtaderi, E Kennedy, The University of Newcastle, Australia, M Delichatsios, FireSERT, The University of Ulster, UK</td>
<td>475</td>
</tr>
<tr>
<td>The behaviour of lining fires in rooms</td>
<td>M Akasha Azhakesan, FireSERT, University of Ulster, UK, J Quintiere, University of Maryland, USA</td>
<td>485</td>
</tr>
<tr>
<td>The width effect in upward flame spread modelling</td>
<td>Kuang-Chung Tsai, F-S Wan, National Kaohsiung First University of Science and Technology, Taiwan</td>
<td>497</td>
</tr>
<tr>
<td>Pallet and wood storage fires</td>
<td>Peter van de Leur, DGMR Consulting Engineers, S Öhlin Lostetter, TNO Centre for Fire Research, The Netherlands</td>
<td>503</td>
</tr>
<tr>
<td>Heat release rate of objects burning in compartments</td>
<td>Richard Lyon, D Blake, Federal Aviation Administration, USA</td>
<td>509</td>
</tr>
<tr>
<td>HARMONISATION</td>
<td></td>
<td>515</td>
</tr>
<tr>
<td>Experimental and numerical study of the influence of the forced extraction rate on the SBI test</td>
<td>Bart Merci, B Claes, E Theuns, B Sette, P Vandevelde, Ghent University, Belgium</td>
<td>517</td>
</tr>
<tr>
<td>PERFORMANCE BASED-CODES</td>
<td></td>
<td>523</td>
</tr>
<tr>
<td>Fire safety of wooden buildings in urban areas</td>
<td>Per Jostein Hovde, H Landre, Norwegian University of Science and Technology (NTNU), Norway</td>
<td>525</td>
</tr>
<tr>
<td>Towards the development of design fires for residential buildings: Literature review and survey results of fire loads in Canadian homes</td>
<td>Mohamed Sultan, A Bwalya, N Bénichou, National Research Council of Canada, Canada</td>
<td>531</td>
</tr>
<tr>
<td>The maritime experience in introducing “Alternative fire safety design” regulation</td>
<td>Guillaume Chantelauve, Bureau Veritas, France</td>
<td>537</td>
</tr>
<tr>
<td>RISK</td>
<td></td>
<td>543</td>
</tr>
<tr>
<td>Cluster analysis of fatal fires</td>
<td>Stefan Särdqvist, Swedish Rescue Services Agency, Sweden</td>
<td>545</td>
</tr>
<tr>
<td>Explosion safety engineering: Guidelines for deflagrations in enclosures with inertial vent covers</td>
<td>Vladimir Molkov, R Eber, A Grigorash, University of Ulster, UK</td>
<td>551</td>
</tr>
<tr>
<td>Urban/wildland fires: Ignition by embers</td>
<td>Samuel Manzello, T Cleary, J Yang, National Institute of Standards and Technology, USA</td>
<td>557</td>
</tr>
</tbody>
</table>
Fire safety engineering and chemical process industry
Jerzy Respondek, Sicherheitsinstitut, Switzerland .. 563

The incorporation of fire test data in a risk-based assessment of hydraulic fluid fire resistance
Stuart Jagger, A Nicol, A Thyer, Health & Safety Laboratory, J Sawyer, Health and Safety Executive, UK .. 569

An experimental investigation of heavy gas dispersion from the safety relief tube near the ground
Yu Shebeko, I Bolodian, V Malkin, D Gordienko, A Mindlin, All Russian Scientific Research Institute for Fire Protection, Russia .. 577

STRUCTURES .. 583

National fire regulations limit the use of wood products in buildings in different countries
Birgit Östman, D Rydholm, Trätek, Sweden .. 585

The temperature diffusion in the one side heating construction
Kestutis Lukošius, V Kaziliunas, Fire Research Centre, Lithuania .. 591

Venting in fire rated wooden construction
Geir Jensen, Fire Safe and Simple, H Landrø, The Wood Center, T Log, Stord/Haugesund University College, V Stenstad, Norwegian Building Research Institute, B Vik, BA8 Consulting Engineers Ltd, O Jørgen Bragstad, Student - Norwegian University of Science and Technology, Norway, Philip Grimwood, Sealmaster, UK .. 597

Failure of floor assemblies constructed with timber joists, wood trusses or i-joists during fire resistance tests
Leslie Richardson, Forintek Canada Corp, Canada ... 603

The performance of passive fire protection in a large-scale natural fire test
Tom Lennon, FRS, BRE, K Hart, CAFCO International, UK .. 609

DETECTION .. 615

Assessing sprinkler actuation on high ceilings
Soonil Nam, FM Global Research, USA .. 617

Design fire size for fire safety systems that utilise fast or standard response
Phil Clark, D Smith, FRS, BRE, UK .. 623

FIRE BEHAVIOUR OF MATERIALS .. 629

Evaluation of toxicants for materials used in military vehicles and equipment
Yannick Le Taillec, LNE, France, D Smith, BRE/FRS, J Hunter, QinetiQ, UK, F Groeneveld, TNO, The Netherlands ... 631

Isocyanates in fire smoke
Tommy Hertzberg, P Blomqvist, SP Swedish National Testing and Research Institute, M Dalene, G Skarping, Stockholm University, Sweden ... 639

Dangers related to fires in carbon fibre based composite material
Tommy Hertzberg, SP Swedish National Testing and Research Institute, Sweden 645

Investigation of air gap distribution in protective clothing systems
Il Young Kim, C Lee, B Corner, US Army, RDECOM, USA .. 651
Group solvers: A means of reducing run-times and memory overheads for CFD based fire simulation software
N Hurst-Clark, J Ewer, A Grandison, E Galea, University of Greenwich, UK.......................... 659

Predicting hydrogen chloride concentrations in fire enclosures using a deposition model linked to field fire models
Z Wang, F Jia, E Galea, J Ewer, University of Greenwich, UK... 665

Modelling smoke obscuration in the ISO 9705 room
Colleen Wade, P Collier, BRANZ Ltd, New Zealand.. 671

Validation and uncertainty analysis of numerical simulations of heat flux to a calorimeter in a 2-meter JP-8 pool fire
Anay Luketa-Hanlin, T Blanchat, Sandia National Laboratories, USA.................................. 677

Characterization of a high momentum turbulent jet flame, a comparative study
Leiv Anfin Drange, Z Kazemi, T Log, Stord/Haugesund University College, B Magnussen, Computational Industry Technologies, Norway... 683

Integral level validation and accreditation of multiple-physics codes for computational fire simulations
Elizabeth Weckman, University of Waterloo, Canada, A Brown, G Evans, W Gill, V Figueroa, Sandia National Laboratories, USA... 691

Visibility through inhomogeneous smoke using CFD
Bjarne Paulsen Husted, Danish Institute of Fire and Security Technology, Denmark, J Carlsson, Swedish Defense Research Agency, U Göransson, Lund University, Sweden... 697

Progress on CFD modeling of fire suppression by water mist
Yehuda Sinai, C Staples, P Stopford, ANSYS Europe Ltd, M Edwards, A Hooper, MoD, UK................................. 703

Determinate-probability model of predicting forest fire danger using GIS ArcView
Alexander Filkov, A Grishin, Tomsk State University, Russia... 709

Fire analysis tool – revisited acoustic soot agglomeration in residential smoke alarms
Kathryn Kennedy, G Gorbett, P Kennedy, John A. Kennedy & Associates, USA.......................... 719

Outgassing phenomenon in flash point testing for fire safety evaluation
Gregory Gorbett, C Kennedy, K Kennedy, P Kennedy, John A. Kennedy & Associates, USA.......................... 725

Failure analysis of brass connectors exposed to fire
Elizabeth Buc, D Hoffmann, Safety Engineering Labs., J Finch, MASCO Corporation, USA.......................... 731

The efficacy of water mist fire suppression systems for archive protection
Eric Marchant, Edinburgh Fire Consultants, UK... 743
EVACUATION

Numerical studies on evacuation design in the airport terminals
Candy Ng, W Chow, The Hong Kong Polytechnic University, China .. 749

The simulation of fire and evacuation at sea
Ed Galea, A Grandison, L Filippidis, S Gwynne, J Ewer, P Lawrence,
University of Greenwich, UK ... 755

Limits to locality in cellular automata models of pedestrian behaviour
Richard Holden, A Cangelosi, University of Plymouth, UK .. 761

Evacuation of a multi-level office building: Comparison of predicted results
using an agent-based model with measured data
Nick Waterson, A Mecca and J Wall, Mott MacDonald Limited, UK .. 767

COMBUSTION

The effect of oxygen concentration on co yields in fires
Guy Marlair, J Bertrand, INERIS, France, S Brohez, C Delvosalle,
Faculté Polytechnique de Mons, Belgium ... 775

The development of toxic gas yield in a format suitable for evacuation modelling
James Robinson, F Samson, B-A Sultan, Borealis, Belgium .. 781

Evaluation of the combustion and thermal radiation modelling methods for
fuel- and ventilation- controlled compartment fires
Suresh Kumar, FRS, BRE, UK, J Hua, J Wang, K Kumar, Institute of
High Performance Computing, Singapore .. 787

Methods for estimation of capability of mechanical sparks to ignite gaseous mixtures
Yu Shebeko, V Navtsenya, E Zamyshevsky, All Russian Scientific
Research Institute for Fire Protection, Russia ... 795

TUNNELS

A fire engineering design for new and existing subway stations
Rainer Könnecke, V Schneider, I.S.T. Integrierte Sicherheits-Technik, Germany 803

Six technical databases addressing fire safety in tunnels: A major deliverable of
the fit European thematic network
Yves Martin, J Van Dessel, Belgium Building Research Institute (BBRI),
Belgium, G Marlair, INERIS, France .. 809

The influence of longitudinal ventilation and tunnel size on HGV fires in tunnels
Richard Carvel, A Beard, P Jowitt, Heriot-Watt University, UK .. 815

Computer modelling to assess the benefits of road tunnel fire safety measures
Stewart Miles, S Kumar, FRS, BRE, UK ... 821

PROTECTION OF HISTORIC BUILDINGS

Fire protection of two museums in historic buildings in The Netherlands
J Koudijs, P van de Leur, DGMR Consulting Engineers, The Netherlands 829

Fire protection of Røros – a historic town on the UNESCO world heritage list
Anne Steen-Hansen, Norwegian University of Science and Technology (NTNU),
G Jensen, Interconsult, R Wighus, T Steiro SINTEF, Norway .. 835

Author Index .. 841
TABLE OF CONTENTS

Volume 2

<table>
<thead>
<tr>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>iii</td>
</tr>
<tr>
<td>iv</td>
</tr>
</tbody>
</table>

DETECTION

A new methodology to evaluate the performance of total compartment water mist and water spray systems

Tommy Hertzberg, M Arvidson, SP Swedish National Testing and Research Institute, Sweden .. 847

Investigation into the use of fine water mist for protection of plastic fume exhaust ductwork against fire

Alastair Brown, Rushbrook Consultants, UK, H van Nieuwburg, Philips Semiconductors, The Netherlands ... 857

Determination of activation temperature of glass bulb sprinklers using a thermal liquid bath

Mohammed Khan, J Chaffee, FM Global, USA .. 871

Performance based heat detector spacing

Soonil Nam, FM Global Research, USA ... 883

FIRE BEHAVIOUR OF MATERIALS

Generalizing flammability of materials

Joseph Panagiotou, J Quintiere, University of Maryland, USA 895

Burning behaviour of upholstered furniture

Charles Fleischmann, University of Canterbury, New Zealand, G Hill, Powell Fenwick Consulting Ltd., New Zealand .. 907

Flammability characteristics at applied heat flux levels up to 200 kW/m²: Time to ignition and mass loss flux

Patricia Beaulieu, R Alpert, FM Global, N Dembsey, Worcester Polytechnic Institute, USA ... 917

Application of a methodology to predict room-scale fire performance from bench-scale testing

Jason Huczek, M Janssens, Southwest Research Institute (SwRI), USA 929

A progress report on numerical modeling of experimental polymer melt flow behavior

Kathryn Butler, T Ohlemiller, G Linteris, National Institute of Standards and Technology, USA ... 937

HRR of vertical combustibles inside a confinement: An analytical approach to the fire of electrical cabinets

Laurence Rigollet, S Melis, IRSN, France ... 949

The role of self-heating in the estimation of kinetic constants for thermally unstable materials using differential scanning calorimetry (dsc)

Brian Gray, Firehusk Pty Ltd, C Macaskill, University of Sydney, Australia 961
External heating of electric cables: numerical simulation and autoignition investigation
Jean-Pierre Vantelon, J-P Garo, ENSMA, University of Poitiers, E Thibert, B Gautier, EDF, France ... 973

THE WORLD TRADE CENTRE COLLAPSE ... 985

Predicting fire exposures to structures – a review of the state of the art
Morgan Hurley, Society of Fire Protection Engineers, USA 987

Simulating the fires in the World Trade Center
Kevin McGrattan, C Bouldin, National Institute of Standards and Technology, USA...... 999

A predicted timeline of failure for the WTC Towers
James Quintiere, University of Maryland, USA ... 1009

Robust design of tall buildings in fire – the use of analysis for structural fire engineering solutions
Barbara Lane, S Lamont, Arup Fire, A Usmani, J Torero, G Flint, A Jowsey
University of Edinburgh, UK .. 1023

FIRE SERVICE .. 1025

Investigating fire fighting tactics in a mechanical workshop
Stefan Svensson, Swedish Rescue Services Agency, Sweden 1027

A study on the brand spotting in urban fires - LES analysis on the scattering of square disks in a turbulent boundary layer
Keisuke Himoto, T Maruyama, T Tanaka, Kyoto University, Japan 1039

Analysing the time to untenable conditions for the CESARE-risk computer fire model
A Hasofer, J Qu, I Thomas, CESARE, Victoria University of Technology, Australia 1051

Physics-based modeling of community fires
David Evans, R Rehm, E Baker, National Institute of Standards and Technology,
E McPherson, Pacific Southwest Forest Service Research Station,
J Wallace, University of Nevada-Reno, USA .. 1065

INVESTIGATION .. 1077

Advanced tools for use in forensic fire scene investigation, reconstruction and documentation
John DeHaan, Fire-Ex Forensics, USA ... 1079

Flashover and fire analysis – a discussion of the practical use of flashover analysis in fire investigations
Patrick Kennedy, K Kennedy, John A. Kennedy and Associates, USA 1101

Reconstruction of the fire in “de Hemel” in Volendam, New Years Eve 2000/2001
Peter van de Leur, DGMR Consulting Engineers, S Öhlin Lostetter, P Reijman,
TNO Centre for Fire Research, The Netherlands .. 1115

Fire spread through a room with polyurethane foam covered walls
William Grosshandler, D Madrzykowski, N Bryner, D Stroup,
National Institute of Standards and Technology, USA 1127
Fire and life safety assessment of US egress and sprinkler requirements within nightclubs - a preliminary update
Jeffrey Tubbs, B Meacham, A Moore, B McLaughlin, M Johann, A Woodward, Arup Fire, USA ... 1139

Charring rate of wood as a tool for fire investigations
Vytenis Babrauskas, Fire Science and Technology, USA ... 1155

Fire and explosion in an automobile paint drying oven
Keith Moodie, Health and Safety Laboratory, UK, J Venart, University of New Brunswick, Canada............................ 1171

Estimating the performance of enclosure fire models by correlating forensic evidence of accidental fires
A Fernandez-Pello, G Rein, A Bar-Ilan, University of California, N Alvares, Fire Sciences Applications, USA... 1183

CFD fire simulation of the Swissair flight 111 in-flight fire
F Jia, M Patel, E Galea, University of Greenwich, UK................................. 1195

Fire investigation using CFD: Simulations of a fire in a discotheque
Ricky Carvel, J Lygate, International Fire Investigators & Consultants, UK................... 1207

COMPUTER MODELLING .. 1219

Numerical and experimental investigation of flame spread over a PMMA surface
Jianping Zhang, S Ferraris, S Dembele, J Wen, Kingston University, UK, U Göransson, P Petersson, G Holmstedt, Lund Institute of Technology, Sweden........ 1221

Mixing and turbulent transport in unconfined and impinging plumes
André Marshall, X Yao, T Ma, A Trouvé, University of Maryland, USA......................... 1233

Influence of solid material properties on numerical large scale flame spread calculations
Erwin Theuns, B Merci, J Vierendeels, P Vandeveldt, Ghent University, Belgium........ 1245

Numerical simulation of decomposition and combustion of organic materials
Ken Erickson, V Nicolette, Sandia National Laboratories, USA, B Vembe, Computational Industry Technologies AS, Norway.. 1257

Establishing the credibility of results from modeled time and length scales in fires
Louis Gritzo, S Tieszen, M Pitch, Sandia National Laboratories, USA........................... 1269

Validation of FDS v4 boundary heat flux predictions for a corner fire
Jason Floyd, B Lattimer, Hughes Associates, USA ... 1281

A new approach to the simulation of gaseous combustion and its application to several test fire scenarios
Jianwen Zhang, University of Greenwich, UK and Beijing University of Chemical Technology, China, F Jia, E Galea, J Ewer, University of Greenwich, UK............................. 1293

Validation of a field model for liquid spills
Javier Trelles, A Kelly, B Lattimer, Hughes Associates, USA... 1305

3D simulation of industrial hall in case of fire - Benchmark between
ABAQUS, ANSYS and SAFIR
O Vassart, L Cajot, Profilairbed Research, Luxembourg, M O'Connor, Y Shenkai, Corus UK Ltd, UK, C Fraud, B Zhao, CTICM, France, J de la Quintana, J Martinez de Aragon, Fundacion Labein, Spain, J Franssen, F Gens, University of Liège, Belgium... 1315
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>An assessment of fire growth models - Branzfire and FDS against CSIRO fire tests on combustible linings in a room</td>
<td>Vivek Apte, A Bui, B Paroz, A Webb, V Dowling, CSIRO, Australia, C Wade, BRANZ, New Zealand</td>
<td>1325</td>
</tr>
<tr>
<td>Comparison of the zone model OZone with natural fire tests in large deep compartment</td>
<td>Jean-François Cadorin, University of Liege, Belgium</td>
<td>1337</td>
</tr>
<tr>
<td>A coupled CFD-FEA study of a tunnel structure exposed to fire</td>
<td>J Fellinger, Y Kenyon, A Breunese, A Lemaire, TNO Centre for Fire Research, The Netherlands, I Barry, IEB Consulting Ltd, UK</td>
<td>1349</td>
</tr>
<tr>
<td>Performance assessment of external structure protection by CFD</td>
<td>Daniel Joyeux, P Van Hulle, S Desanghere, CTICM, France</td>
<td>1361</td>
</tr>
<tr>
<td>SMALL SCALE TESTING</td>
<td></td>
<td>1373</td>
</tr>
<tr>
<td>The new Japanese building regulations and the new test methods</td>
<td>Shinichi Sugahara, Tokyo University of Science, Japan</td>
<td>1375</td>
</tr>
<tr>
<td>Fire performance of personal computers and fire hazard in a home and in a small office</td>
<td>Marcelo Hirschler, GBH International, USA</td>
<td>1383</td>
</tr>
<tr>
<td>Using the cone calorimeter for screening and control testing of fire retarded treated wood products</td>
<td>Bjarne Kristoffersen, A Steen-Hansen, Norwegian Fire Research Laboratory, SINTEF, Norway</td>
<td>1397</td>
</tr>
<tr>
<td>Screening of plenum cables using a small-scale fire test protocol</td>
<td>Robert Bill Jr, M Khan, R Alpert, FM Global, USA</td>
<td>1409</td>
</tr>
<tr>
<td>On the use of bench-scale smoke toxicity data in fire hazard and risk assessment</td>
<td>Richard Gann, National Institute of Standards and Technology, USA</td>
<td>1421</td>
</tr>
<tr>
<td>Surface temperature measurements in the cone calorimeter using phosphorescence</td>
<td>Ulf Göransson, A Omrane, Lund University, Sweden</td>
<td>1431</td>
</tr>
<tr>
<td>COMBUSTION</td>
<td></td>
<td>1443</td>
</tr>
<tr>
<td>Measurement of soot yield from JP-8 pool fires using light extinction</td>
<td>Kirk Jensen, A Brown, Sandia National Laboratories, USA</td>
<td>1445</td>
</tr>
<tr>
<td>Particles from fire: Evaluation of the particulate fraction in fire effluents using the cone calorimeter</td>
<td>Yannick Le Tallec, L Saragoza, Laboratoire National d’Essais, France, T Hertzberg, P Blomqvist, SP Swedish National Testing and Research Institute, Sweden</td>
<td>1455</td>
</tr>
<tr>
<td>The environmental effect of furniture</td>
<td>Petra Andersson, P Blomqvist, L Rosell, M Simonson, SP Fire Technology, H Stripple, IVL, Sweden</td>
<td>1467</td>
</tr>
<tr>
<td>A model for the scenario-related assessment of the smoke toxic potency</td>
<td>Björn Bansemer, F-W Wittbecker, University of Wuppertal, Germany</td>
<td>1479</td>
</tr>
</tbody>
</table>
TUNNELS

Salt water experiments and simple model for investigating tunnel fire dynamics
Antoine Mos, P Carlotti, Centre d’Études des Tunnels, B Gay, Université Claude Bernard Lyon I, France, G Hunt, Imperial College London, UK .. 1491

An analysis of conditions resulting from fires during tunnel boring operations
Frederick Mowrer, J deJoseph, University of Maryland, USA, M Johansson, Lund University, Sweden .. 1493

Fire in road tunnels and life safety: Lessons to be learnt from minor accidents
Xavier Bodart, Consultant, Guy Marlair, INERIS, France, R Carvel, Heriot-Watt University, UK .. 1505

Fires in heavy goods vehicle (HGV) cargos in tunnels
Anders Lönnermark, H Ingason, SP Swedish National Testing and Research Institute, Sweden .. 1517

Verification of fire safety of the MarktMaas-tunnel with full-scale fire tests
Victor Meeussen, TNO Center for Fire Research, The Netherlands 1529

Asphalt ignition in case of fire in civil engineering structures: Chemical analysis
Albert Noumowe, University of Cergy-Pontoise, France 1531

TRANSPORT

Fire safety background for Japanese underground railway systems and field experiments on the smoke movement in subway stations
Yuji Hasemi, S Moriyama, D-g Nam, S Tanaka, N Okazawa, W Ding, Waseda University, Japan .. 1533

Fire safety management on the railways
Jaime Santos-Reyes, A Beard, Heriot-Watt University, UK 1535

Development of a method to assess the fire hazard of automotive materials
Marc Janssens, K Battipaglia, J Huczek, M Miller, Southwest Research Institute, USA .. 1537

The generic management system (GMS) approach to fire safety of composite materials
Oleg Sukovoy, C Kuo, University of Strathclyde, N Little, Intelligent Engineering Ltd, A Sharp, Lloyd’s Register of Shipping EMEA, UK 1539

An analysis of issues and solutions for the management of fire investigations at major incidents
Ronald Hopkins, Eastern Kentucky University, USA 1541

Author Index ... 1609